## References

Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Grdenić, D. (1950). Arh. Kem, 22, 14-23; Chem. Abstr. 46, 9926 h. (See Structure Reports, Vol. 13, p. 206. Utrecht: Oosthoek.)
Grdenić, D. (1965). Q. Rev. Chem. Soc. 19, 303-328.
Harmsen, E. J. (1938). Z. Kristallogr. 100, 208-211.
International Tables for X-ray Crystallography (1974). Vol.
IV. Birmingham: Kynoch Press.

Kashiwabara, K., Konaka, A. \& Kimura, M. (1973). Bull. Chem. Soc. Jpn, 46, 410-413.
Sagisawa, K., Kitahama, K., Kiriyama, H. \& Kiriyama, R. (1974). Acta Cryst. B30, 1603-1604.

Sandström, M. (1978). Acta Chem. Scand. Ser. A, 32, 627-641.
Sandström, M. \& Liem, D. H. (1978). Acta Chem. Scand. Ser. A, 32, 509-514.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Subramanian, V. \& Seff, K. (1980). Acta Cryst. B36, 2132-2135.

Acta Cryst. (1980). B36, 2152-2 154

# Lithium [(R,S)-N, $N^{\prime}$-Ethylenediaminedisuccinato]cobaltate(III) Trihydrate 

By F. Pavelčík, J. Garaj* and J. Majer<br>Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, 88034 Bratislava, Czechoslovakia

(Received 24 July 1979; accepted 7 May 1980)

Abstract. $\mathrm{Li}\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CoN}_{2}-$ $\mathrm{O}_{8}^{-} \cdot \mathrm{Li}^{+} .3 \mathrm{H}_{2} \mathrm{O}, M_{r}=408 \cdot 2$, monoclinic, $P 2_{1} / c, a=$ 9.624 (10), $b=12.788$ (6), $c=12.049$ (6) $\AA, \beta=$ $94.85(6)^{\circ}, U=1477.6(1.8) \AA^{3}, Z=4, D_{m}=$ $1.80(2), D_{x}=1.83 \mathrm{Mg} \mathrm{m}^{-3}$, Мo $K \alpha(\lambda=0.7107 \AA)$, $\mu=1.28 \mathrm{~mm}^{-1}$. The final $R$ is 0.074 for 1689 independent observed reflections. The Co atoms of the $\left[\mathrm{Co}_{2}\{(R, S) \text {-edds }\}_{2}\right]$ dimeric complex anion are bonded octahedrally to the two N atoms and one O atom from each of the four carboxylate arms of the two complexing species. The complex anions are held together by $\mathrm{LiO}_{4}$ tetrahedra and hydrogen bonds.

Introduction. Preparation, chemistry and preliminary results on the crystal structure of $\mathrm{Li}[\mathrm{Co}\{(R, S)$ edds $\}$ ]. $3 \mathrm{H}_{2} \mathrm{O}$ were given by Pavelčík \& Majer (1977). In this paper full crystallographic data are presented. The crystal used for the structure determination was of an approximate cubic form $\{100\},\{011\}$ with an edge dimension of 0.2 mm . The intensities of 3785 independent reflections $\left(2.9^{\circ} \leq 2 \theta \leq 55^{\circ}\right)$ were collected on a Syntex $P 2_{1}$ diffractometer with graphitemonochromated Mo $K \alpha$ radiation and the $\theta-2 \theta$ technique at a scan rate varying from 4.88 to $29.3^{\circ}$ $\min ^{-1}$ in $2 \theta$. The background was measured at each end of the scan for one half of the reflection scan time. Two standards, monitored after every 94 reflections,

[^0]0567-7408/80/092152-03\$01.00
showed that no correction for instrumental instability or crystal decay was required. 1689 reflections with $I>$ $1.96 \sigma(I)$ were considered as observed (only 45\%). A value of $0.698 \sigma(I)$ was assigned to the weak unobserved reflections with $I<0 \cdot 698 \sigma(I)$. The intensities were corrected for Lorentz and polarization factors. No corrections for absorption or extinction were made. The structure was solved by three-dimensional Patterson and electron density Fourier syntheses. H atoms were found for the [ $R, S$ )-edds ${ }^{4-}$ anion, but not for the water molecules. The structure was refined by block-diagonal least squares with anisotropic thermal parameters for the non-hydrogen and isotropic thermal parameters for the H atoms. The function $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ was minimized; a weighting scheme $w^{-1}=$ $\sigma^{2}\left(\left|F_{o}\right|\right)+\left(C\left|F_{o}\right|\right)^{2}$, where $\sigma\left(\left|F_{o}\right|\right)$ is derived from counting statistics and $C=0 \cdot 05$, was employed. $C$ was adjusted so that constant values of $\left\langle w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right\rangle$ were obtained in different $\left|F_{0}\right|$ intervals. The final residual $R\left(=\sum|\Delta F| / \sum\left|F_{o}\right|\right)$ was 0.074 for the observed reflections used in the refinement and 0.166 including the zero-weighted reflections. Corresponding weighted residuals $R_{w}\left[=\left(\sum w|\Delta F|^{2} / \sum w\left|F_{o}\right|^{2}\right)^{1 / 2}\right]$ were 0.083 and 0.114 . The maximum peak in the final difference synthesis was 0.38 e $\AA^{-3}$. Scattering factors were taken from International Tables for $X$-ray Crystallography (1968). All crystallographic calculations were performed with the NRC program package (Ahmed, 1970) on a Siemens 4004/150 computer. Atomic coordinates for the non-hydrogen (C) 1980 International Union of Crystallography

Table 1. Final atomic coordinates ( $\times 10^{4}$ ) for the nonhydrogen atoms
E.s.d.'s are given in parentheses.

|  | $x$ |  |  |
| :--- | :---: | ---: | ---: |
|  | $x$ | $z$ |  |
| $\mathrm{C}(1)$ | $1637(10)$ | $1982(8)$ | $-1381(7)$ |
| $\mathrm{C}(2)$ | $3002(9)$ | $1390(8)$ | $-1215(8)$ |
| $\mathrm{C}(3)$ | $4351(10)$ | $2150(7)$ | $513(8)$ |
| $\mathrm{C}(4)$ | $3418(10)$ | $3043(7)$ | $807(8)$ |
| $\mathrm{C}(5)$ | $5078(9)$ | $1685(8)$ | $1577(8)$ |
| $\mathrm{C}(6)$ | $4165(10)$ | $1216(8)$ | $2432(8)$ |
| $\mathrm{C}(7)$ | $-515(9)$ | $2133(7)$ | $-340(7)$ |
| $\mathrm{C}(8)$ | $-781(9)$ | $1973(7)$ | $870(8)$ |
| $\mathrm{C}(9)$ | $-1809(10)$ | $1884(7)$ | $-1125(8)$ |
| $\mathrm{C}(10)$ | $-2404(10)$ | $831(8)$ | $-872(7)$ |
| $\mathrm{O}(1)$ | $2134(6)$ | $2808(5)$ | $874(5)$ |
| $\mathrm{O}(2)$ | $3935(7)$ | $3906(5)$ | $980(6)$ |
| $\mathrm{O}(3)$ | $2851(6)$ | $1148(5)$ | $2215(5)$ |
| $\mathrm{O}(4)$ | $4732(7)$ | $919(6)$ | $3318(6)$ |
| $\mathrm{O}(5)$ | $163(6)$ | $1537(5)$ | $1497(5)$ |
| $\mathrm{O}(6)$ | $-1910(6)$ | $2244(6)$ | $1180(6)$ |
| $\mathrm{O}(7)$ | $-1491(6)$ | $108(5)$ | $-735(5)$ |
| $\mathrm{O}(8)$ | $-3671(7)$ | $723(5)$ | $-863(6)$ |
| $\mathrm{N}(1)$ | $732(7)$ | $1534(6)$ | $-556(6)$ |
| $\mathrm{N}(2)$ | $3455(7)$ | $1306(6)$ | $1(6)$ |
| $\mathrm{Co}(1)$ | $1840(1)$ | $1348(1)$ | $806(1)$ |
| $W(1)$ | $7999(8)$ | $657(6)$ | $3003(7)$ |
| $W(2)$ | $6892(8)$ | $4170(7)$ | $440(7)$ |
| $W(3)$ | $717(11)$ | $106(11)$ | $3448(11)$ |
| $\mathrm{Li}(1)$ | $6512(19)$ | $364(13)$ | $3898(15)$ |
|  |  |  |  |

atoms are listed in Table $1,{ }^{*}$ bond distances and angles in Table 2, and selected torsion angles in Table 3.

Discussion. The $\mathrm{Li}^{+}$ion is surrounded by four O atoms at the corners of an irregular tetrahedron, two belonging to water molecules and two to the carboxylic groups of the $[(R, S) \text {-edds }]^{4-}$ molecule. $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles

[^1]Table 2. Interatomic distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ in the complex anion and $\mathrm{LiO}_{4}$ tetrahedron with e.s.d.'s in parentheses

See Table 4 for the symmetry code.

| $\mathrm{Co}-\mathrm{N}(1) \quad 1$ | 1.895 (7) | $\mathrm{C}(5)-\mathrm{C}(6) \quad 1.5$ | 1.532 (13) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co}-\mathrm{N}(2) \quad 1$ | 1.901 (7) | $\mathrm{C}(6)-\mathrm{O}(3) \quad 1.2$ | $1 \cdot 272$ (11) |
| $\mathrm{Co}-\mathrm{O}(1) \mathrm{l}$ | 1.889 (6) | $\mathrm{C}(6)-\mathrm{O}(4) \quad 1.2$ | 1.218 (11) |
| $\mathrm{Co}-\mathrm{O}(3) \quad 1$ | 1.901 (6) | $\mathrm{C}(7)-\mathrm{C}(8) \quad 1.5$ | 1.515 (12) |
| $\mathrm{Co}-\mathrm{O}(5) \quad 1$ | 1.893 (6) | C(7)-C(9) 1.5 | 1.532 (13) |
| $\mathrm{Co}-\mathrm{O}\left(7^{\text {i }}\right.$ ) 1 | 1.893 (6) | $\mathrm{C}(8)-\mathrm{O}(5) \quad 1.26$ | 1.262 (11) |
| $\mathrm{N}(1)-\mathrm{C}(1) \quad 1$ | 1.492 (12) | $\mathrm{C}(8)-\mathrm{O}(6) \quad 1.22$ | 1.228 (11) |
| $\mathrm{N}(1)-\mathrm{C}(7) \quad 1$ | 1.465 (11) | $\mathrm{C}(9)-\mathrm{C}(10) \quad 1.5$ | 1.505 (13) |
| $\mathrm{N}(2)-\mathrm{C}(2) \quad 1$ | 1.497 (12) | $\mathrm{C}(10)-\mathrm{O}(7) \quad 1.27$ | 1.277 (11) |
| $\mathrm{N}(2)-\mathrm{C}(3) \quad 1$ | 1.483 (12) | $\mathrm{C}(10)-\mathrm{O}(8) \quad 1.2$ | 1.228 (11) |
| $\mathrm{C}(1)-\mathrm{C}(2) \quad 1$ | 1.515 (13) | $\mathrm{Li}-\mathrm{O}\left(2^{\mathrm{vi}}\right) \quad 1.9$ | 1.923 (18) |
| $\mathrm{C}(3)-\mathrm{C}(4) \quad 1$ | 1.512 (13) | $\mathrm{Li}-\mathrm{O}(4) \quad 1.92$ | 1.929 (19) |
| $\mathrm{C}(3)-\mathrm{C}(5) \quad 1$ | 1.528 (14) | $\mathrm{Li}-W(1) \quad 1.90$ | 1.901 (20) |
| $\mathrm{C}(4)-\mathrm{O}(1) \quad 1$ | 1.281 (11) | $\mathrm{Li}-W\left(2^{v}\right) \quad 1.9$ | 1.956 (20) |
| $\mathrm{C}(4)-\mathrm{O}(2) \quad 1$ | 1.221 (11) |  |  |
| $\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$ | 89.2 (3) | $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{O}(2)$ | 125.6 (9) |
| $\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}(1)$ | 89.1 (3) | C(3)-C(5)-C(6) | 118.0 (8) |
| $\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}(3)$ | 176.6 (3) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$ | $120 \cdot 3$ (8) |
| $\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}(5)$ | 85.8 (3) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(4)$ | 118.1 (8) |
| $\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}\left(7^{\text {i }}\right.$ ) | 90.0 (3) | $\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{O}(4)$ | 121.6 (9) |
| $\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}(1)$ | 85.6 (3) | $N(1)-C(7)-C(8)$ | 107.9 (7) |
| $\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}(3)$ | $94 \cdot 2$ (3) | N(1)-C(7)-C(9) | 114.6 (7) |
| $\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}(5)$ | 172.8 (3) | C(8)-C(7)-C(9) | 111.8 (7) |
| $\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}\left(7^{\text {i }}\right.$ ) | 95.7 (3) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(5)$ | 117.7 (8) |
| $\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}(3)$ | 91.8 (3) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(6)$ | 118.7 (8) |
| $\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}(5)$ | 89.2 (3) | $\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{O}(6)$ | 123.6 (8) |
| $\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}\left(7^{1}\right)$ | 178.4 (3) | C(7)-C(9)-C(10) | 111.4 (7) |
| $\mathrm{O}(3)-\mathrm{Co}-\mathrm{O}(5)$ | 90.9 (3) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(7)$ | 113.9 (8) |
| $\mathrm{O}(3)-\mathrm{Co}-\mathrm{O}\left(7^{\text {i }}\right.$ ) | 89.1 (3) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(8)$ | 119.9 (8) |
| $\mathrm{O}(5)-\mathrm{Co}-\mathrm{O}\left(7^{1}\right)$ | 89.5 (3) | $\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{O}(8)$ | 126.2 (9) |
| $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$ | 107.9 (5) | $\mathrm{Co}-\mathrm{O}(1)-\mathrm{C}(4)$ | 111.8 (6) |
| $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)$ | 108.7 (5) | $\mathrm{Co}-\mathrm{O}(3)-\mathrm{C}(6)$ | 126.9 (6) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$ | ) 116.7 (7) | $\mathrm{Co}-\mathrm{O}(5)-\mathrm{C}(8)$ | 113.0 (6) |
| $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(2)$ | 108.3 (5) | $\mathrm{Co}-\mathrm{O}\left(7^{1}\right)-\mathrm{C}\left(10^{1}\right)$ | $126 \cdot 1$ (6) |
| $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)$ | $103 \cdot 8$ (5) | $\mathrm{C}\left(4^{\text {vi }}\right)-\mathrm{O}\left(2^{\text {vi }}\right)-\mathrm{Li}$ | $143 \cdot 1$ (8) |
| $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$ | ) 117.8 (7) | $\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{Li}$ | 138.6 (9) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 105.6(7) | $\mathrm{O}\left(2^{\mathrm{vi}}\right)-\mathrm{Li}-\mathrm{O}(4)$ | $100 \cdot 8$ (9) |
| $N(2)-C(2)-C(1)$ | ) 110.0 (8) | $\mathrm{O}\left(2^{\mathrm{vi}}\right)-\mathrm{Li}-W(1)$ | 114.7 (9) |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 108.1(7) | $\mathrm{O}\left(2^{\text {vi }}\right)-\mathrm{Li}-W\left(2^{v}\right)$ | $104 \cdot 3$ (9) |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$ | 105.9(7) | $\mathrm{O}(4)-\mathrm{Li}-W(1)$ | 114.3 (9) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$ | ) 109.6 (8) | $\mathrm{O}(4)-\mathrm{Li}-W\left(2^{v}\right)$ | 108.7 (9) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$ | ) $115.6(8)$ | $W(1)-\mathrm{Li}-W\left(2^{\text {v }}\right.$ ) | 112.9 (9) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$ | ) $118.7(8)$ |  |  |

Table 3. Selected torsion angles $\left(^{\circ}\right)$ in the $\left[\mathrm{Co}_{2}\{(R S) \text {-edds }\}_{2}\right]^{2-}$ complex anion

| $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | -24.5 (8) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Co}$ | 27.5 (9) | $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(9)$ | -149.7 (10) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(5)$ | 11.2 (10) | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(1)$ | -2.4 (8) | $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$ | $72 \cdot 6$ (10) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(5)-\mathrm{Co}$ | $8 \cdot 2$ (10) | $\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$ | -23.2 (8) | $\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(7)$ | -46.0 (10) |
| $\mathrm{C}(8)-\mathrm{O}(5)-\mathrm{Co}-\mathrm{N}(1)$ | -18.7 (8) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$ | -89.9 (9) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{Co}^{1}$ | -161.8 (10) |
| $\mathrm{O}(5)-\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)$ | $24 \cdot 1$ (8) | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 83.2 (9) | $\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{Co}^{1}-\mathrm{N}\left(1^{1}\right)$ | $-131.4(10)$ |
| $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$ | 81.0 (7) | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ | 60.9 (11) | $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 165.1 (7) |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ | -55.6 (10) | $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | -36.5 (8) | $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)$ | $-146 \cdot 8$ (7) |
| $\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$ | 5.3 (13) | $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$ | 19.2 (11) | $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)$ | 88.0 (9) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{Co}$ | 11.8 (13) | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{Co}$ | $9 \cdot 2$ (10) | $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$ | -50.6 (10) |
| $\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{Co}-\mathrm{N}(2)$ | 13.0 (10) | $\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(2)$ | -26.1 (7) | $\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$ | 138.1 (8) |
| $\mathrm{O}(3)-\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)$ | -57.1 (7) | $\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)$ | 34.4 (7) | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$ | -159.3 (7) |
| $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $42 \cdot 3$ (8) | $\mathrm{O}\left(7^{\mathrm{i}}\right)-\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)$ | 113.6 (10) | $\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$ | -95.8(10) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ | -45.5 (10) |  |  |  |  |



Fig. 1. A perspective drawing of the $[\mathrm{Co}\{(R, S) \text {-edds }\}]^{-}$complex anion and the atom-numbering scheme.
range from 101 to $115^{\circ}$ and $\mathrm{Li}-\mathrm{O}$ distances are in the range $1.901-1.956 \AA$. The structure of the $[\operatorname{Co}\{(R, S)$ edds \}]- complex unit is shown in Fig. 1. The Co atom is bonded octahedrally to two N atoms and to four O atoms from four different carboxylate groups. Three O and two N donors are from one complexing molecule, the sixth O donor is from a centrosymmetrically related [Co\{( $R, S)$-edds $\}]^{-}$complex ion, forming in this way a dimeric unit. The stereochemistry of the $\left[\mathrm{Co}_{2}\{(R, S)\right.$ edds $\}_{2}{ }^{2-}$ ion is very similar to that found in the crystal structure of $\mathrm{Co}\left[\mathrm{Co}_{2}\left\{(R, S)\right.\right.$-edds $\left.\gamma_{2}\right] .14 \mathrm{H}_{2} \mathrm{O}$ (Pavelčik, Soldánová \& Majer, 1980). The geometries of the individual chelate rings can be deduced from Table 3. The glycine rings have asymmetric envelope conformations; the six-membered $\beta$-alanine chelate ring has a deformed half-chair conformation. The ethylenediamine ring is in an envelope conformation with $\mathrm{C}(1)$ out of the plane formed by the remaining four atoms [deviations of $\mathrm{C}(1)$ and $\mathrm{C}(2)$ from the $\mathrm{N}(1)$, Co, $\mathrm{N}(2)$ plane are -0.56 and $0.06 \AA$ respectively]. The interatomic distances and angles listed in Table 2 are normal. Binuclear units transformed by the $2_{1}$

Table 4. Hydrogen bond contacts $(\AA) \leq 3 \AA$

| $\mathrm{N}(1) \cdots \mathrm{O}(7)^{*}$ | $2.81(1)$ | $\mathrm{O}(6) \cdots W\left(1^{\text {III }}\right)$ | $3.00(1)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(2) \cdots \mathrm{O}\left(8^{\text {I }}\right)^{*}$ | $2.80(1)$ | $\mathrm{O}(6) \cdots W\left(2^{\text {II }}\right)$ | $2.83(1)$ |
| $\mathrm{O}(2) \cdots W(2)$ | $2.99(1)$ | $W(1) \cdots W\left(3^{\text {III }}\right)$ | $2.72(1)$ |
| $\mathrm{O}(3) \cdots W(3)$ | $2.95(1)$ | $W(2) \cdots W\left(3^{\mathrm{IV}}\right)$ | $2.83(2)$ |
| $\mathrm{O}(5) \cdots W(3)$ | $2.99(2)$ |  |  |

The equivalent positions are:
$\begin{array}{ll}\text { (i) } & -x,-y,-z \\ \text { (ii) } & x-1, y, z \\ \text { (iii) } & x+1, y, z\end{array}$
(iv) $1-x, y+\frac{1}{2}, \frac{1}{2}-z$
(v) $x, \frac{1}{2}-y, \frac{1}{2}+z$
(vi) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

* Intramolecular hydrogen bond.
symmetry operation are interconnected by $\mathrm{LiO}_{4}$ tetrahedra which form a zigzag arrangement around the screw axis. The binuclear unit forms an analogous arrangement around another screw axis shifted by the translation ( $1,0, \frac{1}{2}$ ) so that infinite layers parallel to the (102) plane are formed. The layers are connected by hydrogen bonds between $\mathrm{H}_{2} \mathrm{O}$ molecules bonded to $\mathrm{Li}^{+}$ ions and uncoordinated O atoms of the carboxylic groups. The system of hydrogen bonds is described in Table 4.
We thank Dr M. Dunaj-Jurčo for assistance with the intensity measurements on the Syntex diffractometer.


## References

Ahmed, F. R. (1970). Crystallographic Computing, pp. 55-57. Copenhagen: Munksgaard.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Pavelčík, F. \& Majer, J. (1977). Z. Naturforsch. Teil B, 32, 1089-1090.
Pavelčík, F., Soldánová, J. \& Majer, J. (1980). Collect. Czech. Chem. Commun. In the press.


[^0]:    * Permanent address: Department of Analytical Chemistry, Faculty of Chemistry, Slovak Technical University, 88037 Bratislava, Czechoslovakia.

[^1]:    * Lists of structure factors, thermal parameters and H atom positional parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35327 ( 17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

